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The results that I am about to discuss were obtained
in the course of work on collision rates in electron-positron
colliding-bean storage rings.l Understanding collision
rates requires understanding the statistical distribution
of beam particles.

Idealizing and simplifying for the sake of clarity, an
electron circles a storage ring in the horizontal plane at
the speed of light, with its displacement y perpendicular to

the plane of the ring executing small oscillations according

to

O+ xmug - F(y,£)= Yz(tjé(z’—}J .
modulated periedically_
where X‘vl‘ and F are b in t (the period is

the time needed to circle the ring once), anﬁ.‘é is Gaussian

uncorrelated white noise

CE@EWIY = F(r-2) (2)
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Correspondingly, the probability distribution, P, in y and

y eveolves in time according to a Fokker-Planck equation

B—{:- + ag*- F—“;j (‘6’1313) + 2'2_13.; )
The Langévin equation (1), or the Fokker-Planck equation
(3), differs from textbook systems primarily in that the mo-
dulation period is much smaller, rather than much larger,
than the naive thermal relaxation time, 1/?¥> (the averaging
is over external modulation). In my work, I am particularly
concerned with the limit Y%O,?4£>, with F and the modulation
period fixed.
(& _parowelers)

For today's talk, I shall ignore nmodulationt” The
new results described here, in the present one-dimensional con-
text, constitute a necessary ovrereaquisite for more realistic
studies. I will report soon on a more extensive study of mo-
dulation-related statistical effects (and enlarge on the to-
pics treated in the present talk) in a forthcoming series of
publications. .

The analysis I describe today concerns the "semiclassical"”
(small - Yl } approximation to thesolution of (3) corres-
ponding to the probability that a Langévin particle, initially

at y=y and y=v , ends up at vy and v at time t:
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where N is a normalization constant. (This is most easily
derived from path integral considerations.z) I have replaced
the force F by minus the derivative of a (confining and sym-
metric, for definiteness) potential U. The path y(7T) extre-
mizes the exponent, subject to the boundary conditions indi-

cated in the parentheses on the left-hand side. The extremal

("Onsager-Machlup") equation is

YA Wyllg ey cwig]) g

I am concerned with solutions of (5) and (4) for small
¥ but for large time (t}.,o(f/g) , because in storage rings,
y?!) = milliseconds, much shorter than the time scale (mi-
nutes, hours) on which elementary-particle experiments are
performed.

In order to solve (5) approximately for small &§ , I
assume that at any time, y is close to a solution of fric-
tionless, nociseless Newton's law, §+U'(y)=0, up to a deviation
that vanishes as ¥>O (t¥ fixed). I then proceed as fol-
lows:

I take the interval (0,t) and break it into subinter-
vals - a subinterval (except for the first and last) begins
and ends at two succesive times when v crosses zero (where
U'=0). Eardly any damping or fluctuation takes place in one
such subinterval. The deviation of y in such a subinterval
from Newtonian vibration depends on ¥ » and also on the

way initial acceleration deviates from -U'(0)=0, and also



on how the initial y differs from the Newtonian value -u"(0)y.

I compute the solution y to (5) in a subinterval by per-
turbing about a solution to undamped Newtonian motion in powers
of ¥ » and of a (acceleration (times sign of initial velo-
city)at beginning of subinterval), and of p (value of y+U"y
(times sign of initial velocity) at beginning of subinterwval) .
From this computation I derive an approximate map, which
transforms the values of a, p, and speed v at the beginning
of one subinterval into their values at the beginning of the
next.

This one-subinterval map is to be iterated many (3 o(%))

times. My main result is that such long-time iteration can

be done in a simple closed form, up to small remainders.

A technical note: It is necessary to assign formal orders
in ‘K to the variables a and p in order to make the pertur-
bative calculation systematic. I take my cue from two par-

ticular solutions to (5),
% :x%~PW%hO (6)

(damped and antidamped Newtonian motion). 1ilhen y=0, (6) gives
a=3¥v, and p= sz. 50 in the general case I take v=0(1),
a=0(¥ ), and p=0( ¥").

Then the perturbative subinterval map is

Av:a(%)+OWﬂJ (7a)
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where J is pi times the canonical action integral for undanped

(7b)

Newtonian motion at energy v2/2 (JE=%§192dT') Such an undamped

Newtonian oscillation completes itself in time (2/v)dJ/dv.

For small ¥, we may, because of (7), consider 4 v, Aa,

A p as differentials rather than finite differences. Then

(7) is a system of three first-order ODE's. This system turns

out to have two conserved quantities

E=-v¥i-al + Apv,

- (8)
H= 3 ;—Eﬁ%“ - %7 +a2(“3'-'a)],

The former, E, is the restriction to y=0 of

2L - : f_‘-ﬂ_(éi— (9)
E = L_—Lg 24 Uéa% YW az aj)
which is actually conserved exactly by (5), as a consequence

of our present neglect of any explicit time-dependence of

parameters. The latter, H, is a kind of adiabatic invariant,

_ - = - = o+ = A= . (10)
H = 1&,’[1— 3% TRy A oar “gaﬁ]
When the right-hand sides of (7) are written in terms of H,

the equations for Av and A a take a canonical Hamiltonian
form
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Because of these conservation laws, the system (7) can
be solved (approximately) by quadrature. The end result is
this: 1In terms of E and H, the probability in equation (4)
(restricted, for simplicity, to ¥Y1=Y5=0) is

P(o,Vvi;o,v,; )2
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The path of integration proceeds from lvll down to a turning

point, and then up to IVZ]. To determine E and H, one extre-

mizes the exponent in (12) (with vy and vy fixed) subject

to the constraint

¥t= Y35 (+F « o)

i | vl (T/8V)
= %+
=¥ L [Tan- €8 ek o(¥), (13)

Here is a check: as Yf->® » 1t turns out that both E

and H approach zero. Then the probability (12) becomes

- 2
N €exp ‘é{f (‘}L) (14)
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i.e. Maxwell-Boltzmann, as it should. Incidentally, E=H=0



means that v, a, and p correspond to the restriction of solu-
tions of equations (6) to y=0. This is to be interpreted .as
follows: When Z= a0 , the extremal path proceeds from (yl,vl)
to (0,0) according to damped Newtonian motion, and then pro-
ceeds from (0,0) to (yz,vz) according to antidamped Newto-:
nian motion. -

Note that the harmonic oscillator is singular as far as
this formalism is concerned. When U is gquadratic in y, (12}
and (13) depend on the same one linear combination of E and
H, so that the constants cannot be determined independently.
In this case, the formalism rust be modified in a well-defined

way. With the appropriate modifications, one can reproduce

3

the exact” harmonic oscillator Fokker-Planck Green's function

{(to within O¢( ' ) in the exponent).
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